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Abstract. The effect of temporal and spatial potential-energy fluctuations on low-temperature
dark dc conductivity in disordered materials is considered. Analytical models are formulated to
treat the variable-range hopping in a disordered system of localized states whose energies are
subjected to 1/f temporal fluctuations. Long-range spatial potential fluctuations are described as
a random distribution of intrinsic electric field. Temporal 1/f fluctuations are assumed either to be
independent of carrier hopping or to be caused by the latter process. Both spatial and independent
1/f temporal fluctuations are shown to yield temperature dependences of the conductivity much
weaker than those predicted by the Mott law. Self-sustaining 1/f temporal fluctuations caused
by the carrier random walk lead to the crossover from Mott’s T −1/4 to T −1/3 dependence with
increasing temperature.

1. Introduction

Amorphous semiconductors are normally considered as isotropic and homogeneous systems
for charge transport processes implying that the characteristic scale of the disorder is much
shorter than both carrier jump distance and inelastic scattering length [1, 2]. However, the
presence of randomly distributed and oriented molecular dipoles or charged defects may lead
to a random distribution of the electrostatic potential [3] whose characteristic scale is much
larger than either the jump distance in a disordered hopping system or the mean free path of
delocalized carriers in materials with trap-modulated band transport. The concept of a random
potential landscape is not an unusual one in disordered systems. It was used by Tauc [4] and
Fritzsche [5] in their analysis of optical absorption in amorphous semiconductors. Overhof
and Beyer [6] simulated the effect of long-range potential fluctuations on charge transport in
disordered hopping systems. The occurrence of a random potential distribution was further
suggested as a possible origin of the

√
F field dependence of carrier mobility in disordered

organic materials [7] and the suppressed rate of bimolecular recombination, experimentally
observed in many amorphous materials, can also be explained by spatial separation of the
electron and hole densities on the mesoscopic scale within a fluctuating potential landscape [8].

Moving the charges and/or rotating the dipoles which give rise to the random potential
landscape must in any given material inevitably lead to interactions which give rise to
temporal potential fluctuations. Although both the charge carrier random walk and the dipole
rotation are slow processes at low temperatures they may generate low-frequency potential-
energy fluctuations [9, 10] whose spectrum is quite different from the frequency spectrum of
normal lattice oscillations which determine the temperature and participate in phonon-assisted
processes. As far as carrier transport is concerned, the latter are revealed by electron–phonon
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interactions giving rise to thermally assisted carrier jumps while the former can (slowly)
change the relative energy positions of starting and target states. Therefore, the random energy
fluctuations will affect any process in which either carrier release from traps or charge transfer
between localized states is involved.

Such fluctuations have been identified [11] as the origin of the apparent temperature
dependence of the density-of-states energy distributions recovered from experimental
photocurrent transients [12] or from modulated photocurrents [13, 14] in hydrogenated
amorphous silicon (a-Si:H). The fluctuations result in early release of a localized carrier
whenever it stays trapped long enough to undergo large-amplitude oscillations, implying a
higher trap-controlled carrier mobility than could be expected without the fluctuations [15].
Photogeneration of charge carriers increases the density of charges whose diffusion enhances
the random potential fluctuations. Concomitantly, localized carriers can be released from
temporarily shallower traps that leads to an experimentally observed apparent upward shift of
the trapping level in a-Si:H films under constant illumination [16]. In the present work we
consider the effects of both temporal and spatial random potential-energy fluctuations on the
low-temperature dark conductivity in disordered materials, in casu the variable-range hopping
near the Fermi level. In the following sections we consider the effects of spatial and temporal
fluctuations separately and we start our consideration with the former one.

2. Variable range hopping within a random potential landscape

Random potential fluctuations must give rise to a random distribution of local intrinsic electric
field. If this field is strong enough to allow for carrier jumps without thermal activation, the
temperature dependence of the dark conductivity may differ significantly from predictions of
the standard variable-range hopping theory for a given density-of-states (DOS) distribution.
In a random hopping system, an external field affects the conductivity mainly by changing
the energy difference between starting and target sites. The rate, ν, of carrier jumps over the
distance r between hopping sites of the energies Es and Et in the presence of the external
field F is described by the Miller–Abrahams expression [17] that can be written in terms of a
universal hopping parameter u defined as:

ν = ν0 exp(−u) u = 2γ r +




0 Et < Es + eF rz
Et − Es − eF rz

kT
Et > Es + eF rz

(1)

where z = cosϑ , ϑ is the angle between the field and the jump direction, γ the inverse
localization radius, T the temperature and k the Boltzmann constant. Following the Mott
approach to the variable range hopping we consider carrier jumps from localized states with
energies near the Fermi level, EF , as the rate-limiting steps in the dark hopping conductivity.
For a starting site located at the Fermi level, target sites, whose hopping parameters are less
than u, may be found within the shaded area in figure 1. Assuming a constant density of states
near EF one may evaluate the average number of such target sites, n(u, T , F ) as

n(u, T , F ) = 2πg0

[ ∫ 1

0
dz

∫ u/2γ

0
dr r2

∫ kT (u−2γ r)+eF rz

0
dE

+
∫ 0

−1
dz

∫ kT u/2γ kT−eF r

0
dr r2

∫ kT (u−2γ r)+eF rz

0
dE

]

= πu4

3

g0kT

(2γ )3

[
3f 3 + 8f 2 + 8f + 4

4(1 + f )2

]
(2)
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where the dimensionless parameter f = eF/2γ kT accounts for the field effect on the carrier
hopping rate. The minimum value of u, sufficient to provide for dc conductivity, will be
obtained when the average number of the target sites is sufficient to provide for a percolation
path, i.e. when n(umin, T , F ) = nc. The use of this condition in equation (2) yields:

umin =
(

24ncγ 3

πg0kT

)1/4 [
4(1 + f )2

3f 3 + 8f 2 + 8f + 4

]1/4

. (3)

Concomitantly, neglecting weaker field and temperature dependences of the prefactor, σ0, the
conductivity, σ , can be written as

σ(F, T ) = σ0 exp[−umin(F, T )]. (4)

In a disordered system of charges, a Gaussian distribution function of variance F0 may be
considered as a fairly good representation of a random electric field:

ϕ(F ) = 1

2
√
πF0

exp

(
−F 2

F 2
0

)
. (5)

In the absence of an external electric field, averaging of local microscopic currents yields zero
macroscopic current:

j(T ) =
∫

dFFσ(F, T )ϕ(F ) (6)

due to an isotropic distribution of the intrinsic electric field. However, if an external field Fext is
applied to the sample the field distribution is no longer isotropic, and a non-zero macroscopic
current along the external field direction will result. Assuming that Fext � F0 and that Fext

is parallel to the z-axis of a Cartesian coordinate system the integral in the right-hand side of
equation (6) yields:

jz(T ) = 1

π3/2F 3
0

∫ ∞

−∞
dFx

∫ ∞

−∞
dFzFzσ (F, T ) exp

[
− (F − Fext)

2

F 2
0

]

= 8Fext

3
√
πF 5

0

∫ ∞

0
dF F 4σ(F, T ) exp

(
−F 2

F 2
0

)
. (7)

Equation (7) shows that the average macroscopic conductivity, 〈σ(T )〉, of a hopping system
with a Gaussian distribution of the intrinsic field is represented by the following expression:

〈σ(T )〉 = 8

3
√
πf 5

0

∫ ∞

0
df f 4σ(f, T ) exp

(
−f 2

f 2
0

)
(8)

with the parameter f0 being defined as f0 = eF0/2γ kT . At low temperatures, equation (8)
predicts a very weak T -dependence of the dark conductivity in the presence of intrinsic field
fluctuations, with the low-temperature limit of the conductivity being higher for stronger field
fluctuations, i.e. at higher values of F0. This lack of temperature dependence is caused by
a dominant contribution to the conductivity of field-assisted carrier jumps within domains
of sufficiently strong intrinsic field. It follows directly from equations (3) and (4) that
the field-assisted conductivity does not depend upon T at low temperatures and reveals an
exp[−(F∗/F )1/4] dependence upon the local intrinsic field strength [18]:

σ = σ0 exp

[
−

(
64ncγ 4

πg0eF

)1/4 ]
eF

2γ kT
	 1. (9)

It is worth noting that the temperature at which the σ–T dependence levels off increases with
increasing field. In other words, a crossover from the T -independent regime of field-assisted
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Figure 1. Region in the r–E space where neighbouring vacant sites of the hopping parameter less
than u are located.

Figure 2. The effect of random potential fluctuations on the dc conductivity. The temperature
dependence of the conductivity calculated from equation (7) is normalized to the Mott conductivity
and compared with the results of Monte Carlo simulations of carrier hopping within a random
potential landscape [3].

carrier jumps to the Mott T −1/4 dependence occurs at higher temperatures in materials with
stronger intrinsic field fluctuations.

Carrier transport in a random hopping system with long-range potential fluctuations was
simulated by Overhof and Beyer [6]. The data obtained from this simulation are presented
in figure 2 together with analytic results calculated from equation (8). Obviously, a good
quantitative agreement is obtained with values for the variance of the Gaussian distribution of
the intrinsic fields which are very realistic.

3. Variable-range hopping in a system with temporal fluctuations of hopping site
energies

In a random system of energetically fluctuating hopping sites, the rate of carrier jumps will be
determined by the interplay of potential fluctuations and of thermally assisted jumps between
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states with temporarily fixed energies. At higher temperatures, a carrier can easily acquire
sufficient thermal energy to make an upward jump from a starting site of the energy Es to
a target site of the energy Et before the energy difference between the two sites, Et − Es

is noticeably changed in the course of potential fluctuations. On the premise of a constant
DOS distribution near the Fermi level, g(E) = g0, this leads to the famous Mott T −1/4 law
for the dark dc conductivity. However, in a disordered system, hopping rates may be low
enough to allow for strong potential fluctuations before the jump is made and, therefore, for
considerable changes in energies of nearest hopping neighbours compared to what should be
expected without the fluctuations.

Random temporal potential fluctuations can be caused either by some charge relaxations
independent of the variable-range hopping of carriers near the Fermi level or by redistribution of
charge density caused by the VRH itself. In the former case, one may consider the fluctuations
as an ab initio background on which the carrier transport occurs and neglect the effect of
carrier transport jumps on the spectrum and the amplitude of the fluctuations. Under the
latter circumstances, one must consider carrier transport and potential fluctuations as a self-
consistent process without assuming any specific spectrum of the fluctuations in advance. In
the following, we consider these two possibilities separately.

3.1. Background temporal fluctuations

In a random hopping system, a carrier localized in a hopping site of energy Est normally
has a well distinguished nearest hopping neighbour characterized by the smallest value of the
hopping parameter u defined by equation (1) with F = 0. At a fixed value of u, all hopping
neighbours with hopping parameters less than u of a site of the energy Est above the Fermi
level must be located within an area in energy-coordinate space, analogous to the one shown
in figure 1 (but symmetric since F = 0). The number of such hopping neighbours, n(u),
increases with increasing u as

n(u) = 4πg0

∫ u/2γ

0
dr r2

∫ Est+kT (u−2γ r)

Er

dE = πg0kT

24γ 3
u4

(
1 + 4

Est − EF

kT u

)
. (10)

Since most carriers make jumps to nearest hopping neighbours, the minimum value of n that
allows the occurrence of a carrier jump from an occupied state must be equal to one. Solving
the equation n(utr ) = 1 yields the critical value of the hopping parameter, utr , that is sufficient
to provide for dc hopping conductivity σ = σ0(T ) exp[−utr (T )], where σ0(T ) is the prefactor
determined by the average jump distance at a given temperature. The use of the function n(u)
given by equation (10) leads to the following equation for the minimum hopping parameter:

u4
tr

(
1 + 4

Est − EF

kT utr

)
= 24γ 3

πg0kT
. (11)

Solving this equation for carriers making jumps from stable sites near the Fermi level,
Est = EF , i.e. neglecting the fluctuations, yields the Mott-type expression for the critical
transport value of the hopping parameter as

utr (T ) =
(

24γ 3

πg0kT

)1/4

. (12)

To introduce the fluctuations into the formalism we use the fact that, although the
fluctuating potential landscape affects energies of all hopping sites, for random oscillations
this is equivalent to a fluctuating energy at the starting site, with energies of target sites being
unchanged. The low-frequency tail of the random-fluctuation spectrum generally reveals a
1/f frequency dependence, A ∝ f0/f , with f0 being the characteristic frequency of the
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fluctuations, that implies a linear increase with time of the fluctuation amplitudeA. Therefore,
one could account for the random energy oscillations in equation (11) by assuming a linear
time dependence of the starting-site energy: Est (t) = EF + �(T )f0t , where � accounts for
the temperature dependence of the fluctuation amplitude. If the fluctuations are not caused
by carrier motion a linear temperature dependence for the amplitude, �(T ) = kT , should
be acceptable, given the stronger exponential dependence upon temperature of the jump rate.
This yields the following equation for the minimum hopping parameter,

u4
tr (t)

(
1 + 4

f0t

utr (t)

)
= 24γ 3

πg0kT
(13)

whose solution now depends upon the relevant time scale. Since the time a carrier remains in
the starting site will determine the longest time it can undergo the fluctuations (corresponding
to the largest fluctuation amplitude), one must use the jump time tj = (1/ν0) exp(utr ) as the
relevant fluctuation time in the left-hand side of equation (13) that yields an implicit expression
for the fluctuation-affected critical value of the hopping parameter:

u4
tr

[
1 + 4

f0

ν0utr
exp(utr )

]
= 24γ 3

πg0kT
. (14)

Neglecting the second term in the left-hand side of equation (14) of course yields the Mott-type
expression for the minimum hopping parameter. This ‘fluctuation’ term remains small and,
correspondingly, the Mott solution remains valid if the following condition is fulfilled:

4
f0

ν0

(
πg0kT

24γ 3

)1/4

exp

(
24γ 3

πg0kT

)1/4

� 1. (15)

The condition given by equation (15) can be met only at sufficiently high temperatures. At
lower temperatures it is not valid, implying a dominant role of the energy fluctuations in
the carrier transport processes. The use of a set of material parameters which is typical for
amorphous semiconductors, g0 = 1018 cm−3 eV−1, γ = 107 cm−1, yields the crossover
temperature Tc ≈ 40 K for a ratio f0/ν0 = 10−15.

At lower temperatures, i.e. under the regime of fluctuation-controlled hopping, the
conductivity reveals an almost linear dependence upon temperature:

σ = σ0

[
ln

(
6γ 3ν0

πg0f0kT

)]3
πg0f0kT

6γ 3ν0
. (16)

In summary, the effect of random potential fluctuations with the fluctuation amplitude being
proportional to temperature leads to a crossover from the Mott law at higher temperatures to
a practically linear T -dependence of the conductivity at lower temperatures. This crossover is
shown in figure 3 with the ratio f0/ν0 as a parameter.

3.2. Current-induced fluctuations

For fluctuations in the potential landscape due to the carrier jumps themselves one may assume
that the fluctuation amplitude is proportional to the average jump rate, ν(T ) ∝ ν0 exp(−utr ),
within the volumeV where the Coulomb interaction of charge carriers is sufficiently strong, i.e.
�(T )f0 ∝ �0V kT g0ν0 exp(−utr ), where the term kT g0 accounts for the density of carriers
which participate in the hopping near the Fermi level [16]. The use of this expression for the
fluctuation amplitude in equation (13) yields the following equation for the minimum hopping
parameter:

u4
tr

[
1 + 4

�0Vg0

utr

]
= 24γ 3

πg0kT
. (17)
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Figure 3. Temperature dependence of the conductivity
controlled by the background temporal fluctuations of
localized-state energies.

Equation (17) yields the Mott T −1/4 dependence for the conductivity at low temperatures.
At higher temperatures where the second term of the left-hand side of equation (24) becomes
dominant, the T -dependence of σ changes from T −1/4 to a T −1/3 law:

σ = σ0 exp

[
−

(
6γ 3

π�0Vg
2
0kT

)1/3 ]
T >

3

32π

γ 3

kg0(�0Vg0)4
. (18)

As one can see from equation (18), the T −1/3 law can be observed within a broad temperature
interval in materials with high values of g0 and 1/γ i.e. in strongly disordered and/or heavily
doped materials. The temperature dependence of the conductivity affected by the self-
sustaining potential fluctuations is illustrated in figure 4.

4. Discussion and conclusions

The occurrence of long-range spatial potential fluctuations implies either a random distribution
of charged defects (normally, in inorganic materials) or a random distribution and/or orientation
of molecular dipoles (mostly, in organic semiconductors). That these distributions cannot be
constant in time follows from the observation that, if they were, the random potential landscape
would be smoothed by redistribution of intrinsic charge carriers. Nevertheless, intrinsic charge
carriers will try to compensate the random potential distribution and by their motion change
it. Therefore, background spatial and temporal potential fluctuations must be coupled to each
other.

Comparing equation (16) with equation (9) shows that accounting for both spatial and
temporal background potential fluctuations yields T -dependences of the dark conductivity
that either level off or become much weaker than predicted by the classical Mott theory at low
temperatures. To our knowledge, such a weak temperature dependence of the conductivity
is never experimentally observed in disordered materials. This implies that the amplitude of
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Figure 4. Temperature dependence of the conductivity
controlled by the self-sustaining temporal fluctuations of
localized-state energies.

the background fluctuations is strongly suppressed. This result is not really surprising since
background fluctuations are assumed to be caused by some process that is slower than the
carrier transport. In the present study that process is the variable-range hopping near the
Fermi level, i.e. the slowest process which may give rise to redistribution of charge carriers
in a structurally stable material. There is just no slower process that can be responsible for
background fluctuations.

Nevertheless, a random walk of charge carriers near the Fermi level can still give rise to
self-sustaining temporal potential fluctuations. The physical origin of such fluctuations is the
Coulomb interaction between locally extrinsic travelling charge carriers with the surrounding
electrons that occupy localized states around the Fermi level. In a sense, the model of
carrier hopping controlled by self-sustaining potential fluctuations can be considered as a
phenomenological approach to the problem of many-electron transitions in the variable-range
hopping theory [19]. It is worth noting that the effect of such potential fluctuations on carrier
hopping is not sensitive to the choice of a specific model of electron–electron interaction. A
prominent feature of 1/f noise is that it describes the low-frequency limit of the fluctuation
spectra independent of the process that causes these fluctuations. This universality implies the
universality of T -dependence of hopping, controlled by 1/f potential fluctuations, irrespective
of specific origin of these fluctuations. The T −1/3 dependence of the dark dc conductivity
was obtained assuming that the density of travelling carriers can be estimated as kT g0 in
accord with the one-particle Boltzmann distribution. However, many-electron self-assisting
transitions may be equivalent to a higher effective temperature for one-particle excitations.
Such processes should then lead to a weaker temperature dependence of the conductivity.

In conclusion, the only feasible mechanism of potential energy fluctuations at low
temperatures is self-sustaining temporal fluctuations caused by carrier hopping near the Fermi
level. Basically, introducing the concept of such fluctuations represents a phenomenological
approach to the problem of many-electron excitations in the variable-range hopping in
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amorphous materials. The obtained results prove that many-electron transitions may
substantially change the temperature dependence of the dark dc conductivity within a broad
temperature interval.
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